近日,尊龙凯时 - 人生就是搏!朴玲钰研究员课题组在光催化产氢方面取得系列新进展,研究成果相继发表于Nano Energy (2020, 67, 104287)、Nano Today(DOI: https:// doi.org/ 10.1016/ j.nantod. 2020. 100968)及Angew. Chem. Int. Ed. (DOI: 10.1002/ anie.202009633)上。
目前,工业制氢主要依靠煤、天然气重整,这个过程加剧了不可再生能源的消耗与环境污染。太阳能作为人类取之不尽用之不竭的可再生能源(约4×1020 J / h),通过光催化过程,将其转化为清洁高效的氢能,是解决上述问题的理想途径,近几十年来该领域的研究备受关注。朴玲钰课题组分别通过光催化水分解和甲酸分解两个过程,实现了高效、稳定的光催化产氢,并为该过程的合理评价提出了系统分析与建议。
太阳能光催化分解水制氢有两种类型,全分解水制氢(2H2O → 2H2 + O2)和半反应分解水制氢(H2O + 牺牲剂→ H2 + 氧化产物)。过去的几十年,全解水取得了较大进展,但依然存在诸多障碍难以逾越,如效率低、稳定性差、体系复杂及成本和安全等问题。在前期工作的基础上(Nano Energy 2017, 41, 488-493; Appl. Catal B: Environ 2018, 220, 471-476等),朴玲钰课题组首次提出了高效、高值光催化分解水过程,即光催化分解纯水获得氢气的同时,制备双氧水(2H2O → H2 + H2O2)。该过程优势显著,形成H2O2是动力学更有利的2电子过程。同时氢氧逆反应被显著抑制,效率极大提升;产物为纯气态H2和更高价值的液态H2O2;消除了分离、纯化成本与安全问题且产物价值大大提升。该过程一举多得,符合实际需求,具有强大应用潜力。相关研究成果发表在Nano Energy (2020, 67, 104287)上。
甲酸无毒、廉价、氢含量高且稳定,是理想的液态储氢介质。在之前工作的基础上(Joule 2018, 2, 549-557),朴玲钰课题组通过理论和实验研究发现,水作为催化剂促进甲酸分解产氢的高效发生,这是本领域首次对水作为催化剂催化该反应进行的报道。水可以有效地降低光催化分解甲酸的活化能,提高反应效率(提高2~4倍),同时水在反应前后保持不变。重要的是,水的助催化作用具有普适性,可适用于不同半导体材料(CdS、g-C3N4、TiO2等)和不同的产氢助剂体系(CoP、Pt、Pd、Ru、Au等)。该研究提升了科研人员对同类反应中水催化作用的关注度,相关成果发表于纳米科学领域知名期刊Nano Today (2020, DOI: https:// doi.org/ 10.1016/ j.nantod. 2020.100968)。
对光催化体系进行催化剂评价过程中,目前还缺乏一个充分、准确的评价体系,导致了对不同催化剂或催化体系难以进行一致、可靠的评估。基于此,朴玲钰课题组从量子效率与太阳能转换效率的准确计算、催化剂使用及环境控制等多个角度,结合文献和实验结果,系统分析了多种参数存在的不足并提出了初步建议,提出了一个更全面、准确且易执行的光催化制氢评价体系。该工作为开发一个更合理、广泛接受和公平的光催化产氢评价体系提供了有价值的信息。上述成果发表于Angew. Chem. Int. Ed. (2020, DOI: 10.1002/ anie. 202009633)上。
尊龙凯时 - 人生就是搏!曹爽助理研究员等为上述工作的第一作者,合作者为国家纳米科学中心刘新风研究员、施兴华研究员等。上述工作得到了国家自然科学基金面上项目、青年项目及中科院战略性先导科技专项B等项目的支持。